Toán Học Việt Nam | Toán Trung Học | Toán Đại Học logo
Đang ở: Home Đề thi học sinh giỏi Đề thi Học sinh giỏi Quốc gia 2013 môn Toán và đáp án

Đề thi Học sinh giỏi Quốc gia 2013 môn Toán và đáp án

Advertisements
(www.MATHVN.com) - Kì thi chọn học sinh giỏi quốc gia diễn ra từ 9-13/1/2013. Dưới đây là Đề thi Học sinh giỏi Quốc gia 2013 môn Toán. Đề thi gồm 7 câu và được thi trong 2 buổi. Đáp án môn Toán sẽ được chúng tôi cập nhật sau ngay tại bài viết này.
đáp án đề thi học sinh giỏi quốc gia 2013 môn toán
Đề thi ngày thứ nhất

NGÀY THI THỨ NHẤT (11/01/2013)


Bài 1. (5,0 điểm)
Giải hệ phương trình sau:
$$\left\{\begin{matrix}\sqrt{\sin^2x+\dfrac{1}{\sin^2x}}+\sqrt{\cos^2y+\dfrac{1}{\cos ^2y}}=\sqrt{\dfrac{20y}{x+y}} \textbf{ (1)}\\ \sqrt{\sin^2y+\dfrac{1}{\sin^2y}}+\sqrt{\cos^2x+\dfrac{1}{\cos ^2x}}=\sqrt{\dfrac{20x}{x+y}} \textbf{ (2)} \end{matrix}\right.$$

Bài 2. (5,0 điểm)
Cho dãy số xác định như sau:
$$\left \{ \begin{matrix} a_1&=&1 &\\a_{n+1}&=&3-\dfrac{a_n+2}{2^{a_n}}&, \forall n \geq 1 \end{matrix}\right. $$
Chứng minh dãy số có giới hạn và tìm giới hạn đó.

Bài 3. (5,0 điểm)
Cho tam giác không cân $ABC$. Kí hiệu $(I)$ là đường tròn tâm $I$ nội tiếp tam giác $ABC$ và $D,E,F$ là các tiếp điểm của $(I)$ với $BC,CA,AB$. Đường thẳng qua $E$ vuông góc $BI$ cắt $(I)$ tại $K$ khác $E$, đường thẳng qua $F$ vuông góc $CI$ cắt $(I)$ tại $L$ khác $F$. Gọi $J$ là trung điểm $KL$.
a) Chứng minh $D,I,J$ thẳng hàng
b) Giả sử $B,C$ cố định, $A$ thay đổi sao cho tỷ số $\frac{AB}{AC}=k$ không đổi. Gọi $M,N$ tương ứng là các giao điểm $IE, IF$ với $(I)$ ($M$ khác $E$, $N$ khác $F$). $MN$ cắt $IB, IC$ tại $P,Q$. Chứng minh đường trung trực $PQ$ luôn qua 1 điểm cố định.

Bài 4. (5,0 điểm)
Cho trước một số số tự nhiên được viết trên một đường thẳng. Ta thực hiện các bước điền số lên đường thẳng như sau: tại mỗi bước, trước tiên xác định tất cả các cặp số kề nhau hiện có trên đường thẳng theo thứ tự từ trái qua phải, sau đó điền vào giữa mỗi cặp một số bẳng tổng của hai số thuộc cặp đó. Hỏi sau $2013$ bước, số $2013$ xuất hiện bao nhiêu lần trên đường thẳng trong các trường hợp sau:

a) Các số cho trước là: $1$ và $1000$?
b) Các số cho trước là: $1,2,...,1000$ và được xếp theo thức tự tăng dần từ trái qua phải.

NGÀY THI THỨ HAI (12/01/2013)


Bài 5. (7,0 điểm)
Tìm tất cả hàm số $f:\mathbb{R}\to \mathbb{R}$ thỏa $f\left( 0 \right)=0;f\left( 1 \right)=2013$ và
$$\left( x-y \right)\left( f\left( {{f}^{2}}\left( x \right) \right)-f\left( {{f}^{2}}\left( y \right) \right) \right)=\left( f\left( x \right)-f\left( y \right) \right)\left( {{f}^{2}}\left( x \right)-{{f}^{2}}\left( y \right) \right)$$ đúng với mọi $x,y\in \mathbb{R}$, trong đó ${{f}^{2}}\left( x \right)={{\left( f\left( x \right) \right)}^{2}}$

Bài 6. (7,0 điểm)
Cho tam giác nhọn $ABC$ nội tiếp $(O)$ và $D$ thuộc cung $BC$ không chứ điểm $A$. Đường thẳng $\vartriangle $ thay đổi đi qua trực tâm $H$ của tam giác $ABC$ cắt đướng tròn ngoại tiếp tam giác $ABH, ACH$ tại $M,N$ ($M,N$ khác $H$)
a)Xác định vị trí của đường thẳng $\vartriangle $ để diện tích tam giác $AMN$ lớn nhất
b)Kí hiệu $d_1$ là đường thẳng qua $M$ vuông góc $DB, d_2$ là đường thẳng qua $N$ vuông góc $DC$. Chứng minh giao điểm $P$ của $d_1$ và $d_2$ luôn thuộc 1 đường tròn cố định

Bài 7. (6,0 điểm)
Tìm tất cả bộ sắp thứ tự $\left( a,b,c,{{a}^{'}},{{b}^{'}},{{c}^{'}} \right)$ thỏa
$$\left \{ \begin{array}{l} ab + a'b' \equiv 1\textbf{(mod 15) (1)}\\ ac + a'c' \equiv 1\textbf{(mod 15) (2)}\\ bc + b'c' \equiv 1\textbf{(mod 15) (3)} \end{array} \right.$$
Với $a,b,c,{{a}^{'}},{{b}^{'}},{{c}^{'}}\in \left\{ 0,1,...,14 \right\}$.

Advertisements
Bài viết liên quan
Advertisements
Luyện thi Đại học môn Toán

Bài viết có 7 bình luận

Nhìn cái đề này em muốn đi tự tử quá, không biết họ thi cái gì vậy nữa? Delete

Đề thi khó quá trời Delete

Nhìn zô là hok pk' jì hết kkk Delete

mấy đề này là dành cho mấy anh đi dép tổ ong, quần đùi, áo cộc thôi. Delete

đề thi quá khủng
Delete

Đề này dành cho người ngoài hành tinh chứ ở phổ thông có học đâu nhỉ Delete

tre con len 3 con biet lam Delete

Đăng nhận xét

Vui lòng để lại đôi lời nhận xét
Để bài viết của chúng tôi được hoàn thiện hơn. Trân trọng!
» Cảm ơn bạn đã đọc bài viết. Nếu đây là lần đầu ghé thăm, hãy LIKE fanpage của chúng tôi trên Facebook để theo dõi những bài viết mới nhất.
» Hãy trở thành cộng tác viên bằng cách gửi bài đến mathvn.com để được đăng tải. Xem hướng dẫn chi tiết cách bạn đọc gửi bài.

Đề thi thử Đại học năm 2014

Các bài viết mới

Bài viết ngẫu nhiên

Twitter Google+ Facebook RSS Feedburner Email