Một số cách chứng minh định lí Pitago - Phần 1

Cách 1: Chứng minh của E. A. Coolidge Cách chứng minh này xuất hiện trong cuốn sách về các vấn đề kinh điển thuộc học thuyết Pitago của tá...

Cách 1: Chứng minh của E. A. Coolidge

Cách chứng minh này xuất hiện trong cuốn sách về các vấn đề kinh điển thuộc học thuyết Pitago của tác giả Elisha Scott Loomis, được xuất bản lần đầu tiên bởi Hội đồng giáo viên quốc gia của môn toán học, vào năm 1927. Thật đáng tiếc, quyển sách này hiện nay không được xuất bản nữa, trong cuốn sách này có tới trên 300 cách chứng minh định lý Pitago, trong đó, có nhiều cách chứng minh tương tự nhau, và tất cả các cách chứng minh nổi tiếng đều có trong cuốn sách của Loomis.

Cách chứng minh dưới đây thì tương tự như cách chứng minh của Bhaskara trong phần “Behold!” đã giới thiệu ở bài trước. Cách chứng minh này được đăng trên tạp trí giáo dục, xuất bản hàng ngày, và tác giả của nó là cô E. A. Coolidge - là một người mù.

Dựng hình và kiểm tra

1. Vẽ một tam giác vuông và các hình vuông trên các cạnh của nó (dùng công cụ custom)
2. Kéo dài tia HA, lấy điểm A’ đối xứng với điểm H qua A bằng cách :

+ Chọn đoạn HA và điểm A

+ Chọn menu Transform --> Rotate --> degrees =180


3. Vẽ một đường thẳng đi qua điểm B và vuông góc với đoạn AA’, Vẽ điểm giao K của 2 đường này.

( Hình bên minh họa cho các bước từ 1 đến 3)

4. Vẽ hình vuông A’KLM.

(Sử dụng công cụ Custom tool như đã giới thiệu ở bài 1)

5. Vẽ Đoạn BK, GM, FL.

6. Làm ẩn đi đường BK.

7. Tô màu cho 4 mảnh trong hình vuông trên cạnh huyền.

8. Đánh dấu vectơ EJ và dịch chuyển 4 đỉnh và 4 cạnh của hình vuông BCDE theo vectơ này (để được hình vuông bên dưới hình vuông trên cạnh b có diện tích bằng diện tích hình vuông BCDE )

+ Đánh dấu theo thứ tự điểm E, J

+ Chọn menu Transform --> Mark vector

+ Đánh dấu 4 cạnh và 4 đỉnh của hình vuông BCDE

+ Chọn vào Menu Transform --> Translate.


9. Như vậy miền diện tích trên cạnh b bây giờ là a2 + b2 . Sử dụng công cụ Translator để di chuyển các các mảnh là bản sao của các mảnh trong hình


vuông trên cạnh huyền vào trong miền có diện tích a2 + b2 trên cạnh b.

Chú ý:

- Hãy thử thay đổi tam giác của bạn, và quan sát xem các mảnh tương ứng còn lại có bằng nhau nữa không.?

- Chú ý rằng, trong trương hợp dựng hình như thế này cạnh b cần phải luôn được giữ là cạnh bên dài hơn nếu không thì sự dựng hình như trên sẽ bị sai.

- Trường hợp đặc biệt trước khi việc dựng hình bi sai là trương hợp cạnh b dài bằng cạnh a thì hình vuông A’KLM biến mất.

- Bạn hãy giải thích xem tại sao với cách làm trên các mảnh có thể xếp vừa khít với miền diện tích trên cạnh b..

Cách 2: Chứng minh của Ann Condit


Đây cũng là một cách chứng minh được giới thiệu trong cuốn sách của Elisha Scott Loomis. Ann Condit nghĩ ra cách chứng minh này vào năm 1938 khi cô mới 16 tuổi và là sinh viên của trường trung học ở miền nam Ấn Độ.

Dựng hình và kiểm tra

1. Dựng đoạn thẳng AB.

2. Vẽ trung điểm D của đoạn thẳng này

3. Vẽ đường tròn bán kính DA.

4. Vẽ đoạn BC và AC , với C là một điểm nằm trên đường tròn. Như vvậy ta đã dựng được tam giác vuông ABC vuông tại C.

5. Vẽ các hình vuông trên các cạnh của tam giác vuông ABC.

6. Vẽ các trung điểm L, M, N của các cạnh phía ngoài của các hình vuông.

7. Vẽ các đoạn DL, DM, DL.

8. Vẽ đoạn FG, Vẽ tia DC, và điểm P là giao điểm cuat tia DC và đoạn FG, sau đó làm ẩn đi tia DC và hiện đoạn DP.

9. Tô màu khác nhau cho diện tích các tam giác DCF, DCG, và DBK.

Cách chứng minh này đưa ra mối liên quan giữa diện tích của các hình tam giác được tô màu với diện tích của các hình vuông trên các cạnh tam giác vuông.

Chọn menu Measure --> calculate để tính được tỉ lệ diện tích của các tam giác với các hình vuông tương ứng.

10. Đo diện tích các tam giác, và di chuyển điểm C quanh một nửa đường tròn trên đường kính AB.

Ta nhận thấy: tổng diện tích của 2 tam giác nhỏ luôn bằng diện tích của tam giác lớn hơn. Và tổng diện tích này không đổi khi điểm C chuyển động trên đường tròn. (xem hình bên dưới).


Nhận xét:
Bạn có thể đã phát hiện ra rằng tổng diện tích của 2 tam giác nhỏ luôn bằng diện tích của tam giác lớn hơn( DBK). Nếu bạn có thể chứng minh được điều này là đúng , và nếu bạn có thể liên hệ từ các diện tích này Với diện tích của các hình vuông, thì bạn sẽ chưngd minh được định lý Pitago. Sau đây là các bước gợi ý để giúp bạn chứng minh định lý.

1. Các tam giác DCG, DCF, và DBK cóchiều dài 1 cạnh bằng nhau đó là : DC và BD( cì đều bằng bán kính đườn tròn.

2. Đoạn PF và PG theo thứ tự là đường cao của 2 tam giác DCF và DCG.

3. Chỉ ra rằng dt DCG + dt DCF = dt DBK.

4. So sánh DCF, DCG, DBK theo thứ với diện tích của các hình vuông CFEB, CAHG, BAGK ?

5. Nếu bạn làm được những yêu cầu trên thì bạn đã chứng minh được định lý Pitago.


(Theo Tạp chí Tin học và Nhà trường)

COMMENTS

Tên

Ảnh đẹp,18,Bài giảng điện tử,6,Bạn đọc viết,225,Bất đẳng thức,48,Bđt Nesbitt,3,Bổ đề cơ bản,9,Bồi dưỡng học sinh giỏi,24,Cabri 3D,2,Các nhà Toán học,74,Câu đố Toán học,8,Câu đối,3,Cấu trúc đề thi,4,Chỉ số thông minh,4,Chuyên đề Toán,232,Công thức Thể tích,7,Công thức Toán,45,Cười nghiêng ngả,28,Danh bạ website,1,Dạy con,8,Dạy học Toán,10,Dạy học trực tuyến,1,Dựng hình,5,Đạo hàm,3,Đề cương ôn tập,27,Đề kiểm tra 1 tiết,23,Đề thi - đáp án,557,Đề thi Cao đẳng,15,Đề thi Cao học,7,Đề thi Đại học,135,Đề thi học kì,78,Đề thi học sinh giỏi,55,Đề thi THỬ Đại học,222,Đề thi Tốt nghiệp,37,Đề tuyển sinh lớp 10,43,Điểm sàn Đại học,5,Điểm thi - điểm chuẩn,68,Đọc báo giúp bạn,13,Giải bài tập SGK,16,Giải Nobel,1,Giải thưởng FIELDS,21,Giải tích,12,Giải trí Toán học,77,Giáo án điện tử,10,Giáo án Hóa học,2,Giáo án Toán,15,Giáo án Vật Lý,3,Giáo dục,114,Giáo trình - Sách,72,Giới hạn,3,GS Hoàng Tụy,4,GSP,6,Gương sáng,18,Hằng số Toán học,12,Hình gây ảo giác,9,Hình học không gian,65,Hình học phẳng,35,Khái niệm Toán học,12,Khảo sát hàm số,20,Kí hiệu Toán học,6,LaTex,10,Lịch sử Toán học,59,Linh tinh,9,Luận văn,1,Luyện thi Đại học,216,Lượng giác,24,Lương giáo viên,3,Ma trận đề thi,7,MathType,7,McMix,2,McMix bản quyền,3,McMix Pro,3,McMix-Pro,3,Microsoft phỏng vấn,9,MTBT Casio,18,Mũ và Logarit,20,Ngô Bảo Châu,43,Nhiều cách giải,27,Những câu chuyện về Toán,9,Olympiad,59,Perelman,7,Ph.D.Dong books,7,Phần mềm Toán,26,Phân phối chương trình,3,Phụ cấp thâm niên,3,Phương trình hàm,3,Sách giáo viên,12,Sai lầm ở đâu?,10,Sáng kiến kinh nghiệm,6,Số phức,16,Sổ tay Toán học,4,Tạp chí Toán học,20,TestPro Font,1,Thiên tài,42,Thơ - nhạc,9,Thủ thuật BLOG,15,Thuật toán,3,Thư,2,Tích phân,38,Toán 10,77,Toán 11,88,Toán 12,144,Toán 9,18,Toán Cao cấp,23,Toán học Tuổi trẻ,26,Toán học - thực tiễn,40,Toán học Việt Nam,18,Tổ hợp,5,Trắc nghiệm Toán,118,Tuyển sinh,128,Tuyển sinh lớp 6,1,Tỷ lệ chọi Đại học,6,Vật Lý,23,Vẻ đẹp Toán học,60,Vũ Hà Văn,2,Xác suất,10,
ltr
item
Toán Học Việt Nam: Một số cách chứng minh định lí Pitago - Phần 1
Một số cách chứng minh định lí Pitago - Phần 1
http://i203.photobucket.com/albums/aa30/schoolnet/Pitago4_1.jpg
Toán Học Việt Nam
https://www.mathvn.com/2009/02/mot-so-cach-chung-minh-inh-li-pitago.html
https://www.mathvn.com/
https://www.mathvn.com/
https://www.mathvn.com/2009/02/mot-so-cach-chung-minh-inh-li-pitago.html
true
2320749316864824645
UTF-8
Loaded All Posts Not found any posts VIEW ALL Readmore Reply Cancel reply Delete By Home PAGES POSTS View All RECOMMENDED FOR YOU LABEL ARCHIVE SEARCH ALL POSTS Not found any post match with your request Back Home Sunday Monday Tuesday Wednesday Thursday Friday Saturday Sun Mon Tue Wed Thu Fri Sat January February March April May June July August September October November December Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec just now 1 minute ago $$1$$ minutes ago 1 hour ago $$1$$ hours ago Yesterday $$1$$ days ago $$1$$ weeks ago more than 5 weeks ago Followers Follow THIS CONTENT IS PREMIUM Please share to unlock Copy All Code Select All Code All codes were copied to your clipboard Can not copy the codes / texts, please press [CTRL]+[C] (or CMD+C with Mac) to copy