Bổ đề cơ bản Langlands dưới con mắt của JOE

Hãy cùng nghe Joe (blogger nước ngoài nổi tiếng nhờ viết blog bằng tiếng Việt) “văn học hóa” hành trình chứng minh “Bổ đề cơ bản” của giáo ...

Hãy cùng nghe Joe (blogger nước ngoài nổi tiếng nhờ viết blog bằng tiếng Việt) “văn học hóa” hành trình chứng minh “Bổ đề cơ bản” của giáo sư Ngô Bảo Châu, để hiểu một cách chân phương nhất, đời thường nhất những gì nhà toán học đã làm được để đưa anh đến với giải thưởng Fields danh giá.
Vừa rồi báo chí kể nhiều về giáo sư Ngô Bảo Châu. Bố, mẹ anh làm gì, trước đây anh học ở đâu và được giải thưởng gì. Anh đã nhận giải thưởng Fields ở thành phố nào, được ai trao tặng huy chương. Thậm chí báo chí có nói công trình của anh dày 169 trang (chính xác quá nhỉ!), và tên của nhà xuất bản phát hành tạp chí đã công bố công trình đó.

Tuy nhiên, báo chí ít nhắc đến nội dung công việc anh ấy đã làm – công việc khiến anh ấy được chọn là người xứng đáng nhận giải thưởng Fields. “Nói chung anh ấy giỏi toán”, là khái niệm sơ sơ của đa số tác giả viết bài liên quan. Khái niệm đó thường được thể hiện bằng ngôn ngữ rất hoành tráng, nhưng vẫn là khái niệm sơ sơ.

Các tác giả thường dừng lại ở câu “Ngô Bảo Châu đã chứng minh được “Bổ đề cơ bản” (thỉnh thoảng cho chút tiếng Pháp vào cho oách: “Le lemme fondamental pour les algèbres de Lie”). Nhưng “Bổ đề cơ bản” là gì và vì sao chứng minh nó?

Tôi không giỏi toán nhưng tôi nghĩ các vấn đề khoa học có thể được thể hiện bằng ngôn ngữ thú vị và dễ hiểu nếu tác giả bỏ chút thời gian nghiên cứu. Tôi đã nghiên cứu và thấy câu chuyện thật thú vị, không kể cho các bạn nghe thì...phí quá!

Câu chuyện bắt đầu như thế này. Cách đây rất lâu các nhà toán học đã công bố hai lý thuyết quan trọng: lý thuyết số học và lý thuyết nhóm (number theory, group theory). Bản chất của hai lý thuyết đó tôi sẽ để cho bác “Wiki” giải thích – điều nên nhớ là (a) hai lý thuyết ấy rất quan trọng trong thế giới toán học và (b) hai lý thuyết ấy từ xa nhìn riêng biệt với nhau, như hai cành của một thân cây.

Bổ đề cơ bản Langlands dưới con mắt của JOE

Cách đây khoảng 30 năm, một nhà toán học Canada tên Robert Langlands đã công bố rằng ông ấy nghĩ hai lý thuyết ấy có sự liên quan rất đa dạng. Quan điểm của Robert (và cách thể hiện quan điểm đó) đã làm cho nhiều nhà toán học thực sự choáng! Robert cũng tự làm choáng mình nữa – ông phát biểu rằng sẽ mất mấy thế hệ để chứng minh sự liên quan đa dạng mà ông ấy cho rằng có tồn tại.

“Nhưng bước đầu tiên sẽ tương đối dễ thực hiện”, ông Robert tự tin nói với đồng nghiệp.

“Bước đầu tiên” đó Robert đặt tên là "fundamental lemma”, và đó chính là “Bổ đề cơ bản” mà các bạn nghe kể nhiều thời gian gần đây.

Ông Robert tựa như đang đứng trên đảo nhỏ. Nhìn về phía Đông là một con tàu lớn. Nhìn về phía Tây cũng là một con tàu lớn. (Hai tàu không có người lái, trôi trên mặt biển.) Robert không nhìn kỹ được nhưng vẫn cho rằng hai con tàu đó có nhiều điểm chung. Có khi sản xuất cùng loại thép. Có khi chân vịt cùng cỡ. Có khi bánh lái của “tàu Đông” hướng về phía tay phải thì bánh lái của “tàu Tây” sẽ tự động hướng về phía tay trái.

Khỏi phải nói hai con tàu đó là lý thuyết số họclý thuyết nhóm.

Với Robert, việc chứng minh “bổ đề cơ bản” có thể so sánh với việc ném hai sợi dây có móc sang hai tàu. Khi việc đó làm xong, các nhà toán học khỏe mạnh có thể đứng trên đảo cùng Robert, dùng dây kéo hai tàu gần nhau. (Khi đó mới nhìn kỹ được, tìm ra sự liên quan.) Việc kéo hai con tàu gần nhau và so sánh là việc Robert nghĩ sẽ mất mấy thế hệ. Nhưng việc ném hai sợi dây có móc đó ông Robert nghĩ sẽ nhanh thôi.

Nhưng ông Robert đã nhầm. Việc ném dây khó lắm. Robert cùng một số em sinh viên đã ném thử mấy lần nhưng lần nào cũng thất bại. Họ chỉ biết ném gần (không chính xác được) và dùng dây loại mỏng.

Đảo của Robert trở thành đảo nổi tiếng. Suốt 30 năm có rất nhiều nhà toán học sang “ném thử” Ai cũng lau mồ hôi và kêu lên “khó quá!” Nhiều nhà toán học trên đất liền chuẩn bị công cụ dùng để kiểm tra và so sánh hai con tàu lúc được kéo về đảo (kéo gần nhau!). Họ sản xuất máy để kiểm tra loại sơn, lập trình phần mềm để phân tích hai chân vịt. Thậm chí có người tập lái tàu và tập cách đứng trên boong tàu để không bị say sóng. Những công việc và sự tập luyện đó sẽ thành vô nghĩa nếu không có người ném dây chính xác.

Và rồi xuất hiện anh Ngô Bảo Châu. Nghe kể về đảo của Robert, anh bơi sang xin ném thử. “Được chứ!”, các nhà toán học giỏi nhất thế giới động viên. “Anh cứ thử thoải mái đi, thử mấy lần cũng được, thử xong ngồi cùng chúng tôi uống trà đá nhé!”

Anh Châu ném thử một lần, ném rất mạnh, dùng loại dây nặng nhất. Các nhà toán học kia đứng lên ngạc nhiên, nhiều cốc trà đá rơi xuống đất. Cách ném của anh Châu rất lạ; anh dùng kỹ thuật đặc biệt mà chưa ai thấy bao giờ. “Ném thật đi anh ơi!”, các nhà toán học động viên tiếp. “Biết đâu anh sẽ là nhà toán học đầu tiên bắt tàu hai tay!”

Ngô Bảo Châu ném thật. Và chính xác. Hai cái móc dính vào hai con tàu ngay, mọi người vỗ tay ầm ĩ.  Rồi anh Châu bảo các nhà toán học đứng trên đảo Robert cầm dây giúp (và bắt đầu kéo hai tàu gần nhau), để anh ấy có thể đi sang Ấn Độ nhận giải thưởng Fields.

Câu chuyện kết thúc tại đây.

Chứng minh “Bổ đề cơ bản” là một trong những thành công lớn nhất của toán học hiện đại, được tạp chí Time bình chọn là 1 trong 10 phát minh khoa học tiêu biểu của năm 2009. Vì Ngô Bảo Châu đã hoàn thành việc này, nên những năm tới đây các nhà khoa học thế giới có thể tự tin nghiên cứu sự liên quan giữa lý thuyết số học và lý thuyết nhóm. Đó thực sự là một thành đạt tuyệt vời – cả Việt Nam nên tự hào về người ném dây có tên Ngô Bảo Châu.
Joe (Dâu Tây)
Tên

12C1,19,12C2,12,12C3,5,12C4,19,12C5,28,12C6,16,12CN,6,12KNTT,44,9C1,6,9C2,9,9C3,15,9C4,17,9C5,30,9C6,9,9C7,5,9C8,5,9C9,18,Ảnh đẹp,18,Bài giảng điện tử,10,Bạn đọc viết,225,Bất đẳng thức,75,Bđt Nesbitt,3,Bổ đề cơ bản,9,Bồi dưỡng học sinh giỏi,41,Cabri 3D,2,Các nhà Toán học,131,Câu đố Toán học,83,Câu đối,3,Cấu trúc đề thi,15,Chỉ số thông minh,4,Chuyên đề Toán,291,congthuctoan,12,Công thức Thể tích,11,Công thức Toán,138,CSC,8,CSN,9,Cười nghiêng ngả,31,Danh bạ website,1,Dạy con,8,Dạy học Toán,292,Dạy học trực tuyến,20,Dựng hình,5,Đánh giá năng lực,1,Đạo hàm,17,Đề cương ôn tập,41,Đề kiểm tra 1 tiết,29,Đề thi - đáp án,1015,Đề thi Cao đẳng,15,Đề thi Cao học,7,Đề thi Đại học,160,Đề thi giữa kì,29,Đề thi học kì,134,Đề thi học sinh giỏi,129,Đề thi THỬ Đại học,419,Đề thi thử môn Toán,69,Đề thi Tốt nghiệp,51,Đề tuyển sinh lớp 10,103,Điểm sàn Đại học,5,Điểm thi - điểm chuẩn,225,Đọc báo giúp bạn,13,Epsilon,9,File word Toán,54,Giải bài tập SGK,238,Giải chi tiết,221,Giải Nobel,1,Giải thưởng FIELDS,24,Giải thưởng Lê Văn Thiêm,4,Giải thưởng Toán học,5,Giải tích,29,Giải trí Toán học,170,Giáo án điện tử,11,Giáo án Hóa học,2,Giáo án Toán,22,Giáo án Vật Lý,3,Giáo dục,369,Giáo trình - Sách,82,Giới hạn,21,GS Hoàng Tụy,8,GSP,6,Gương sáng,212,Hằng số Toán học,19,Hình gây ảo giác,9,Hình học không gian,114,Hình học phẳng,98,Học bổng - du học,12,IMO,28,Khái niệm Toán học,66,Khảo sát hàm số,37,Kí hiệu Toán học,13,LaTex,12,Lịch sử Toán học,81,Linh tinh,7,Logic,11,Luận văn,1,Luyện thi Đại học,231,Lượng giác,61,Lương giáo viên,3,Ma trận đề thi,9,MathType,7,McMix,2,McMix bản quyền,3,McMix Pro,3,McMix-Pro,3,Microsoft phỏng vấn,11,MTBT Casio,28,Mũ và Logarit,39,MYTS,8,Nghịch lí Toán học,11,Ngô Bảo Châu,49,Nhiều cách giải,36,Những câu chuyện về Toán,15,OLP-VTV,33,Olympiad,319,Ôn thi vào lớp 10,3,Perelman,8,Ph.D.Dong books,7,Phần mềm Toán,26,Phân phối chương trình,11,Phụ cấp thâm niên,3,Phương trình hàm,4,Sách giáo viên,15,Sách Giấy,11,Sai lầm ở đâu?,13,Sáng kiến kinh nghiệm,8,SGK Mới,29,Số học,59,Số phức,34,Sổ tay Toán học,4,Tạp chí Toán học,38,TestPro Font,1,Thiên tài,98,Thống kê,8,Thơ - nhạc,9,Thủ thuật BLOG,14,Thuật toán,3,Thư,2,Tích phân,84,Tính chất cơ bản,20,TKXS,44,Toán 10,164,Toán 11,214,Toán 12,538,Toán 9,190,Toán Cao cấp,26,Toán học Tuổi trẻ,26,Toán học - thực tiễn,100,Toán học Việt Nam,29,Toán THCS,23,Toán Tiểu học,5,toanthcs,6,Tổ hợp,39,Trắc nghiệm Toán,222,TSTHO,5,TTT12O,1,Tuyển dụng,11,Tuyển sinh,278,Tuyển sinh lớp 6,8,Tỷ lệ chọi Đại học,6,Vật Lý,24,Vẻ đẹp Toán học,109,Vũ Hà Văn,2,Xác suất,36,
ltr
item
Toán Học Việt Nam: Bổ đề cơ bản Langlands dưới con mắt của JOE
Bổ đề cơ bản Langlands dưới con mắt của JOE
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhchWsvh_ciQc19yq0lpt52qENz2g7LhwVu0W_bus4gJigiINNQ7m6S2GPriN_IFEsjYaTkwgAaiQfP1J_2WVS1CSfBZlnQirapJnmauFQUxvPlIj1rl6tpcQV1MTmP-LEP6-l1nAMPxZ0i/s1600/joe-dau-tay-bo-de-co-ban.jpg
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhchWsvh_ciQc19yq0lpt52qENz2g7LhwVu0W_bus4gJigiINNQ7m6S2GPriN_IFEsjYaTkwgAaiQfP1J_2WVS1CSfBZlnQirapJnmauFQUxvPlIj1rl6tpcQV1MTmP-LEP6-l1nAMPxZ0i/s72-c/joe-dau-tay-bo-de-co-ban.jpg
Toán Học Việt Nam
https://www.mathvn.com/2010/08/bo-e-co-ban-langlands-duoi-con-mat-cua.html
https://www.mathvn.com/
https://www.mathvn.com/
https://www.mathvn.com/2010/08/bo-e-co-ban-langlands-duoi-con-mat-cua.html
true
2320749316864824645
UTF-8
Loaded All Posts Not found any posts XEM TẤT CẢ Xem thêm Reply Cancel reply Delete By Home PAGES POSTS Xem tất cả BÀI ĐỀ XUẤT CHO BẠN LABEL ARCHIVE SEARCH ALL POSTS Not found any post match with your request Về Trang chủ Sunday Monday Tuesday Wednesday Thursday Friday Saturday Sun Mon Tue Wed Thu Fri Sat January February March April May June July August September October November December Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec just now 1 minute ago $$1$$ minutes ago 1 hour ago $$1$$ hours ago Yesterday $$1$$ days ago $$1$$ weeks ago more than 5 weeks ago Followers Follow THIS PREMIUM CONTENT IS LOCKED STEP 1: Share to a social network STEP 2: Click the link on your social network Copy All Code Select All Code All codes were copied to your clipboard Can not copy the codes / texts, please press [CTRL]+[C] (or CMD+C with Mac) to copy Mục lục bài viết